Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
2.
Stem Cell Reports ; 18(9): 1827-1840, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37541259

RESUMO

Adherens junctions (AJs) provide adhesive properties through cadherins and associated cytoplasmic catenins and participate in morphogenetic processes. We examined AJs formed between ISL1+ cardiovascular progenitor cells during differentiation of embryonic stem cells (ESCs) in vitro and in mouse embryogenesis in vivo. We found that, in addition to N-CADHERIN, a percentage of ISL1+ cells transiently formed vascular endothelial (VE)-CADHERIN-mediated AJs during in vitro differentiation on days 4 and 5, and the same pattern was observed in vivo. Fluorescence-activated cell sorting (FACS) analysis extended morphological data showing that VE-CADHERIN+/ISL1+ cells constitute a significant percentage of cardiac progenitors on days 4 and 5. The VE-CADHERIN+/ISL1+ cell population represented one-third of the emerging FLK1+/PDGFRa+ cardiac progenitor cells (CPCs) for a restricted time window (days 4-6). Ablation of VE-CADHERIN during ESC differentiation results in severe inhibition of cardiac differentiation. Disruption of all classic cadherins in the VE-CADHERIN+ population via a cadherin dominant-negative mutant's expression resulted in a dramatic decrease in the ISL1+ population and inhibition of cardiac differentiation.


Assuntos
Antígenos CD , Caderinas , Coração , Animais , Camundongos , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Coração/embriologia
3.
Mol Plant ; 16(5): 919-929, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37050878

RESUMO

N6-methyladenosine (m6A), which is added, removed, and interpreted by m6A writers, erasers, and readers, respectively, is the most abundant modification in eukaryotic mRNAs. The m6A marks play a pivotal role in the regulation of floral transition in plants. FLOWERING LOCUS K (FLK), an RNA-binding protein harboring K-homology (KH) motifs, is known to regulate floral transition by repressing the levels of a key floral repressor FLOWERING LOCUS C (FLC) in Arabidopsis. However, the molecular mechanism underlying FLK-mediated FLC regulation remains unclear. In this study, we identified FLK as a novel mRNA m6A reader protein that directly binds the m6A site in the 3'-untranslated region of FLC transcripts to repressing FLC levels by reducing its stability and splicing. Importantly, FLK binding of FLC transcripts was abolished in vir-1, an m6A writer mutant, and the late-flowering phenotype of the flk mutant could not be rescued by genetic complementation using the mutant FLKm gene, in which the m6A reader encoding function was eliminated, indicating that FLK binds and regulates FLC expression in an m6A-dependent manner. Collectively, our study has addressed a long-standing question of how FLK regulates FLC transcript levels and established a molecular link between the FLK-mediated recognition of m6A modifications on FLC transcripts and floral transition in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Mutação/genética , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Bioact Mater ; 24: 477-496, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36714330

RESUMO

Large bone defects resulting from fractures and disease are a major clinical challenge, being often unable to heal spontaneously by the body's repair mechanisms. Lines of evidence have shown that hypoxia-induced overproduction of ROS in bone defect region has a major impact on delaying bone regeneration. However, replenishing excess oxygen in a short time cause high oxygen tension that affect the activity of osteoblast precursor cells. Therefore, reasonably restoring the hypoxic condition of bone microenvironment is essential for facilitating bone repair. Herein, we designed ROS scavenging and responsive prolonged oxygen-generating hydrogels (CPP-L/GelMA) as a "bone microenvironment regulative hydrogel" to reverse the hypoxic microenvironment in bone defects region. CPP-L/GelMA hydrogels comprises an antioxidant enzyme catalase (CAT) and ROS-responsive oxygen-releasing nanoparticles (PFC@PLGA/PPS) co-loaded liposome (CCP-L) and GelMA hydrogels. Under hypoxic condition, CPP-L/GelMA can release CAT for degrading hydrogen peroxide to generate oxygen and be triggered by superfluous ROS to continuously release the oxygen for more than 2 weeks. The prolonged oxygen enriched microenvironment generated by CPP-L/GelMA hydrogel significantly enhanced angiogenesis and osteogenesis while inhibited osteoclastogenesis. Finally, CPP-L/GelMA showed excellent bone regeneration effect in a mice skull defect model through the Nrf2-BMAL1-autophagy pathway. Hence, CPP-L/GelMA, as a bone microenvironment regulative hydrogel for bone tissue respiration, can effectively scavenge ROS and provide prolonged oxygen supply according to the demand in bone defect region, possessing of great clinical therapeutic potential.

5.
Int Wound J ; 20(5): 1525-1533, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36333728

RESUMO

Background of the Study Diabetic foot ulcers (DFUs) are severe effect of diabetes. This research aimed to discover the role of micro-ribonucleic acid (miRNA) in treating DFUs involved in maggot debridement therapy (MDT) via a miRNA chip study. A miRNA chip approach was adopted. Patients with diabetes (type 1 or 2) who had at least one-foot ulcer (current or previous) were enrolled in the study. The alterations of miRNA expressions in the granulation tissue during treatment with MDT were measured. Following MDT, the increased expression of miR17-92 was verified in vivo. The miR-17-3p expression increased, and Flk-1 (vascular endothelial growth factor) expression was significantly reduced in patients with DFUs who received MDT (P < 0.01). Results from human umbilical vein endothelial cells that excrete or secrete showed consistency with in vitro findings (P < 0.001, P < 0.05). The overexpression of miR-17-3p demonstrated inhibitory activity on tube formation (P < 0.05). When DFUs were treated with MDT, it revealed that miR-17-3p had a negative regulatory effect on Flk-1.


Assuntos
Diabetes Mellitus , Pé Diabético , MicroRNAs , Animais , Humanos , Pé Diabético/terapia , Cicatrização , Fator A de Crescimento do Endotélio Vascular/genética , Análise de Sequência com Séries de Oligonucleotídeos , Larva , Células Endoteliais da Veia Umbilical Humana , MicroRNAs/genética , Diabetes Mellitus/metabolismo
6.
Stem Cells ; 41(1): 11-25, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36318802

RESUMO

As crucial epigenetic regulators, long noncoding RNAs (lncRNAs) play critical functions in development processes and various diseases. However, the regulatory mechanism of lncRNAs in early heart development is still limited. In this study, we identified cardiac mesoderm-related lncRNA (LncCMRR). Knockout (KO) of LncCMRR decreased the formation potential of cardiac mesoderm and cardiomyocytes during embryoid body differentiation of mouse embryonic stem (ES) cells. Mechanistic analyses showed that LncCMRR functionally interacted with the transcription suppressor PURB and inhibited its binding potential at the promoter region of Flk1, which safeguarded the transcription of Flk1 during cardiac mesoderm formation. We also carried out gene ontology term and signaling pathway enrichment analyses for the differentially expressed genes after KO of LncCMRR, and found significant correlation of LncCMRR with cardiac muscle contraction, dilated cardiomyopathy, and hypertrophic cardiomyopathy. Consistently, the expression level of Flk1 at E7.75 and the thickness of myocardium at E17.5 were significantly decreased after KO of LncCMRR, and the survival rate and heart function index of LncCMRR-KO mice were also significantly decreased as compared with the wild-type group. These findings indicated that the defects in early heart development led to functional abnormalities in adulthood heart of LncCMRR-KO mice. Conclusively, our findings elucidate the main function and regulatory mechanism of LncCMRR in cardiac mesoderm formation, and provide new insights into lncRNA-mediated regulatory network of mouse ES cell differentiation.


Assuntos
RNA Longo não Codificante , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos Knockout , Diferenciação Celular/genética , Miocárdio , Miócitos Cardíacos , Mesoderma/metabolismo
7.
Acta Histochem ; 124(2): 151840, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35042002

RESUMO

Pulmonary venous return development establishes the fetal circulation and is critical for the formation of pulmonary circulation independent of systemic circulation at birth. Anomalous returns lead to inappropriate drainage of blood flow, sometimes resulting in neonatal cyanosis and cardiac failure. While many classical studies have discussed the anatomical features of the pulmonary venous system development, the cellular dynamics of the endothelia based on the molecular marker expression remain unknown. In the present study, we examined the expression of several endothelial markers during early pulmonary vascular system development of murine embryos. We show that Endomucin and CD31 are expressed early in endothelial cells of the splanchnic plexus, which is the precursor of the pulmonary vascular system. Three-dimensional analyses of the expression patterns revealed the spatiotemporal modification of the venous returns to systemic venous systems or sinoatrial canal during the formation of the pulmonary plexus. We herein report the results of spatiotemporal analyses of the early pulmonary venous system development with histochemistry as well as a delineation of the anatomical features of the tentative drainage pathways.


Assuntos
Células Endoteliais , Veias Pulmonares , Animais , Pulmão , Camundongos , Circulação Pulmonar , Veias Pulmonares/anormalidades
8.
Dev Biol ; 478: 212-221, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34245726

RESUMO

To date, the role of miRNAs on pluripotency and differentiation of ESCs into specific lineages has been studied extensively. However, the specific role of miRNAs during lateral and paraxial mesoderm cell fate decision is still unclear. To address this, we firstly determined miRNA profile of mouse ESCs differentiating towards lateral and paraxial lineages which were detected using Flk1 and PDGFαR antibodies, and of myogenic and hematopoietic differentiation potential of purified paraxial and lateral mesodermal cells within these populations. miRNAs associated with lateral and paraxial mesoderm, and their targets were identified using bioinformatics tools. The targets of the corresponding miRNAs were validated after transfection into mouse ESCs. The roles of the selected miRNAs in lateral, and paraxial mesoderm formation were assessed along with hematopoietic and myogenic differentiation capacity. Among the miRNAs, mmu-miR-126a-3p, mmu-miR-335-5p and mmu-miR-672-5p, upregulated in lateral mesoderm cells, and mmu-miR-10b-5p, mmu-miR-196a-5p and mmu-miR-615-3p, upregulated in paraxial mesoderm cells. While transient co-transfection of mmu-miR-126a-3p, mmu-miR-335-5p and mmu-miR-672-5p increased the number of lateral mesodermal cells, co-transfection of mmu-miR-10b-5p, mmu-miR-196a-5p and mmu-miR-615-3p increased the number of paraxial mesodermal cells. Moreover, differentiation potential of the lateral mesodermal cells into hematopoietic cell lineage increased upon co-transfection of mmu-miR-126a-3p, mmu-miR-335-5p and mmu-miR-672-5p and differentiation potential of the paraxial mesodermal cells into skeletal muscle lineage were increased upon co-transfection of mmu-miR-10b-5p, mmu-miR-196a-5p and mmu-miR-615-3p. In conclusion, we determined the miRNA profile of lateral and paraxial mesodermal cells and co-transfection of miRNAs increased differentiation potential of both lateral and paraxial mesodermal cells transiently.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/fisiologia , Mesoderma/citologia , MicroRNAs/genética , Animais , Biologia Computacional , Corpos Embrioides/citologia , Células-Tronco Embrionárias/metabolismo , Hematopoese , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , MicroRNAs/metabolismo , Desenvolvimento Muscular , Transfecção , Regulação para Cima
9.
Biomed Pharmacother ; 141: 111877, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34323693

RESUMO

Leukemia is responsible for a reason of death, globally. Even though there are several treatment regimens available in the clinics against this disease, a perfect chemotherapeutic agent for the same is still under investigation. Natural plant-derived secondary metabolites are used in clinics to treat leukemia for better benefits with reduced side-effects. Likely, several bioactive compounds from Callistemon sp. were reported for their bioactive benefits. Furthermore, acylphloroglucinol derivatives from Callistemon salignus, showed both antimicrobial and cytotoxic activities in various adherent human cancer cell lines. Thus, in the present study, a natural acylphloroglucinol (2,6-dihydroxy-4-methoxyisobutyrophenone, L72) was tested for its antiproliferative efficacy in HEL cells. The MTT and the cell cycle analysis study revealed that L72 treatment can offer antiproliferative effects, both time and dose-dependent manner, causing G2/M cell cycle arrest. The western blot analysis revealed that L72 treatment triggered intrinsic apoptotic machinery and activated p21. Likewise, L72 could downregulate the gene expressions of XIAP, FLT3, IDH2, and SOD2, which was demonstrated by qPCR analysis, thus promoting its antiproliferative action. The L72 could impede STAT3 expression, which was evidenced by insilico autodock analysis and western blot analysis using STAT3 inhibitor, Pimozide. The treatment of transgenic (Flk-1+/egfr+) zebrafish embryos resulted in the STAT3 gene inhibition, proving its anti-angiogenic effect, as well. Thus, the study revealed that L72 could act as an antiproliferative agent, by triggering caspase-dependent intrinsic apoptosis, reducing cell proliferation by attenuating STAT3, and activating an anti-angiogenic pathway via Flk-1inhibition.


Assuntos
Inibidores da Angiogênese/farmacologia , Proliferação de Células/efeitos dos fármacos , Floroglucinol/farmacologia , Extratos Vegetais/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Inibidores da Angiogênese/isolamento & purificação , Animais , Animais Geneticamente Modificados , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Floroglucinol/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Estrutura Secundária de Proteína , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Peixe-Zebra
10.
J Bacteriol ; 203(17): e0022721, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34124944

RESUMO

Swarming motility is flagellum-mediated movement over a solid surface, and Bacillus subtilis cells require an increase in flagellar density to swarm. SwrB is a protein of unknown function required for swarming that is necessary to increase the number of flagellar hooks but not basal bodies. Previous work suggested that SwrB activates flagellar type III secretion, but the mechanism by which it might perform this function is unknown. Here, we show that SwrB likely acts substoichiometrically as it localizes as puncta at the membrane in numbers fewer than those of flagellar basal bodies. Moreover, the action of SwrB is likely transient as puncta of SwrB were not dependent on the presence of the basal bodies and rarely colocalized with flagellar hooks. Random mutagenesis of the SwrB sequence found that a histidine within the transmembrane segment was conditionally required for activity and punctate localization. Finally, three hydrophobic residues that precede a cytoplasmic domain of poor conservation abolished SwrB activity when mutated and caused aberrant migration during electrophoresis. Our data are consistent with a model in which SwrB interacts with the flagellum, changes conformation to activate type III secretion, and departs. IMPORTANCE Type III secretion systems (T3SSs) are elaborate nanomachines that form the core of the bacterial flagellum and injectisome of pathogens. The machines not only secrete proteins like virulence factors but also secrete the structural components for their own assembly. Moreover, proper construction requires complex regulation to ensure that the parts are roughly secreted in the order in which they are assembled. Here, we explore a poorly understood activator of the flagellar T3SS activation in Bacillus subtilis called SwrB. To aid mechanistic understanding, we determine the rules for subcellular punctate localization, the topology with respect to the membrane, and critical residues required for SwrB function.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Flagelos/química , Flagelos/genética , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica , Domínios Proteicos , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo
11.
Int J Fertil Steril ; 15(2): 148-157, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33687169

RESUMO

BACKGROUND: Vascular endothelial growth factor (VEGF) and the corresponding receptors play key role in vasculogenesis and angiogenesis processes. VEGF is one of the prime candidates in regulating embryo implantation by increasing vascular permeability. VEGF receptor-2, also called Flk-1/KDR, is one of the prime receptor which is actively involved in the execution of various functions of VEGF. However, precise role of this receptor during early gestation period is yet to be addressed. In the present study, expression of Flk-1/KDR during peri-implantation mice uterus as well as fetal-maternal tissues from day 4-day 7 (D4-D7) of gestation was investigated. MATERIALS AND METHODS: In this experimental study, localization of Flk-1/KDR was investigated by immunohistochemistry and immunofluorescence techniques, in paraffin embedded tissue sections. Flk-1/KDR protein and mRNA expressions were investigated by western blotting and quantitative reverse transcription polymerase chain reaction (qRT-PCR), respectively. Effects of ovarian steroids on expression of Flk-1/KDR were also assessed by estrogen and progesterone antagonist treatment. RESULTS: Uterine tissue on D4 showed strong expression of Flk-1/KDR in luminal and uterine glandular epithelium. On D5 and D6, differential expression of Flk-1/KDR was evidenced in certain cell types of the embryo, maternal tissues and fetal-maternal interface with varied intensity. Flk-1/KDR was specifically expressed in the ectoplacental cone (EPC) and various cells of the embryo on D7. Flk-1/KDR expression was not evidenced in the estradiol-17ß (E2) and progesterone (P4) antagonist treated uterus. Western blotting result revealed presence of Flk-1/KDR protein in the all gestation days, except antagonist treated uterus. qRT-PCR analysis showed significant increase of Flk-1/KDR mRNA transcript on D6 and D7. CONCLUSION: Spatial-temporal expression of Flk-1/KDR during peri-implntation period in mice uterus especially in the feto-maternal interface was observed. This spatio-temporal specificity as well as increased expression of Flk-1/KDR could be one of the determinants for establishment of fetal-maternal cross talk during the critical period of development.

12.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182781

RESUMO

Erythroid Krüppel-like factor (EKLF/KLF1) was identified initially as a critical erythroid-specific transcription factor and was later found to be also expressed in other types of hematopoietic cells, including megakaryocytes and several progenitors. In this study, we have examined the regulatory effects of EKLF on hematopoiesis by comparative analysis of E14.5 fetal livers from wild-type and Eklf gene knockout (KO) mouse embryos. Depletion of EKLF expression greatly changes the populations of different types of hematopoietic cells, including, unexpectedly, the long-term hematopoietic stem cells Flk2- CD34- Lin- Sca1+ c-Kit+ (LSK)-HSC. In an interesting correlation, Eklf is expressed at a relatively high level in multipotent progenitor (MPP). Furthermore, EKLF appears to repress the expression of the colony-stimulating factor 2 receptor ß subunit (CSF2RB). As a result, Flk2- CD34- LSK-HSC gains increased differentiation capability upon depletion of EKLF, as demonstrated by the methylcellulose colony formation assay and by serial transplantation experiments in vivo. Together, these data demonstrate the regulation of hematopoiesis in vertebrates by EKLF through its negative regulatory effects on the differentiation of the hematopoietic stem and progenitor cells, including Flk2- CD34- LSK-HSCs.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Animais , Antígenos CD34/genética , Antígenos CD34/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem da Célula/genética , Linhagem da Célula/fisiologia , Células Cultivadas , Subunidade beta Comum dos Receptores de Citocinas/genética , Subunidade beta Comum dos Receptores de Citocinas/metabolismo , Hematopoese/genética , Hematopoese/fisiologia , Transplante de Células-Tronco Hematopoéticas , Homeostase , Fatores de Transcrição Kruppel-Like/deficiência , Fatores de Transcrição Kruppel-Like/genética , Fígado/citologia , Fígado/embriologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tirosina Quinase 3 Semelhante a fms/deficiência , Tirosina Quinase 3 Semelhante a fms/genética
13.
Basic Res Cardiol ; 115(6): 58, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32880713

RESUMO

Pulmonary arterial hypertension is a severe and progressive disease characterized by a pulmonary vascular remodeling process with expansion of collateral endothelial cells and total vessel occlusion. Endothelial cells are believed to be at the forefront of the disease process. Vascular endothelial growth factor (VEGF) and its tyrosine kinase receptor, VEGF receptor-2 (VEGFR-2), play a central role in angiogenesis, endothelial cell protection, but also in the destabilization of endothelial barrier function. Therefore, we investigated the consequences of altered VEGF signaling in an experimental model, and looked for translational correlates of this observation in patients. We performed an endothelial cell-specific conditional deletion of the kinase insert domain protein receptor (kdr) gene, coding for VEGFR-2, in C57/BL6 mice (Kdr∆end) and held them in an environmental chamber with 10% FiO2 or under normoxia for 6 weeks. Kdr knockout led to a mild PH phenotype under normoxia that worsened under hypoxia. Kdr∆end mice exhibited a significant increase in pulmonary arterial wall thickness, muscularization, and VEGFR-3+ endothelial cells obliterating the pulmonary artery vessel lumen. We observed the same proliferative vasculopathy in our rodent model as seen in patients receiving anti-angiogenic therapy. Serum VEGF-a levels were elevated both in the experimental model and in humans receiving bevacizumab. Interrupted VEGF signaling leads to a pulmonary proliferative arteriopathy in rodents after direct ablative gene manipulation of Kdr. Histologically, similar vascular lesions can be observed in patients receiving anti-VEGF treatment. Our findings illustrate the importance of VEGF signaling for maintenance of pulmonary vascular patency.


Assuntos
Pressão Arterial , Proliferação de Células , Células Endoteliais/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/deficiência , Remodelação Vascular , Inibidores da Angiogênese/uso terapêutico , Animais , Apoptose , Bevacizumab/uso terapêutico , Modelos Animais de Doenças , Células Endoteliais/patologia , Feminino , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/patologia , Hipertrofia Ventricular Direita/fisiopatologia , Hipóxia/complicações , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/sangue , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Estudos Prospectivos , Hipertensão Arterial Pulmonar/etiologia , Hipertensão Arterial Pulmonar/patologia , Hipertensão Arterial Pulmonar/fisiopatologia , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/sangue , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Função Ventricular Direita , Pressão Ventricular
14.
Cells ; 9(9)2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825779

RESUMO

Circular RNAs (circRNAs) are the products of the non-canonical splicing of pre-mRNAs. In contrast to humans and animals, our knowledge of the biogenesis and function of circRNAs in plants is very scarce. To identify proteins involved in plant circRNA generation, we characterized the transcriptomes of 18 Arabidopsis thaliana knockout mutants for genes related to splicing. The vast majority (>90%) of circRNAs were formed in more than one variant; only a small fraction of circRNAs was mutant-specific. Five times more circRNA types were identified in cbp80 and three times more in c2h2 mutants than in the wild-type. We also discovered that in cbp80, c2h2 and flk mutants, the accumulation of circRNAs was significantly increased. The increased accumulation of circular transcripts was not accompanied by corresponding changes in the accumulation of linear transcripts. Our results indicate that one of the roles of CBP80, C2H2 and FLK in splicing is to ensure the proper order of the exons. In the absence of one of the above-mentioned factors, the process might be altered, leading to the production of circular transcripts. This suggests that the transition toward circRNA production can be triggered by factors sequestering these proteins. Consequently, the expression of linear transcripts might be regulated through circRNA production.


Assuntos
Arabidopsis/metabolismo , Splicing de RNA/genética , RNA Circular/genética , Animais , Arabidopsis/genética , Humanos
15.
J Genet Genomics ; 47(5): 249-261, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32703661

RESUMO

Interspecies chimera through blastocyst complementation could be an alternative approach to create human organs in animals by using human pluripotent stem cells. A mismatch of the major histocompatibility complex of vascular endothelial cells between the human and host animal will cause graft rejection in the transplanted organs. Therefore, to achieve a transplantable organ in animals without rejection, creation of vascular endothelial cells derived from humans within the organ is necessary. In this study, to explore whether donor xeno-pluripotent stem cells can compensate for blood vasculature in host animals, we generated rat-mouse chimeras by injection of rat embryonic stem cells (rESCs) into mouse blastocysts with deficiency of Flk-1 protein, which is associated with endothelial and hematopoietic cell development. We found that rESCs could differentiate into vascular endothelial and hematopoietic cells in the rat-mouse chimeras. The whole yolk sac (YS) of Flk-1EGFP/EGFP rat-mouse chimera was full of rat blood vasculature. Rat genes related to vascular endothelial cells, arteries, and veins, blood vessels formation process, as well as hematopoietic cells, were highly expressed in the YS. Our results suggested that rat vascular endothelial cells could undergo proliferation, migration, and self-assembly to form blood vasculature and that hematopoietic cells could differentiate into B cells, T cells, and myeloid cells in rat-mouse chimeras, which was able to rescue early embryonic lethality caused by Flk-1 deficiency in mouse.


Assuntos
Blastocisto/citologia , Vasos Sanguíneos/transplante , Quimera/genética , Transplante de Células-Tronco Hematopoéticas , Animais , Blastocisto/metabolismo , Vasos Sanguíneos/metabolismo , Transferência Embrionária , Células-Tronco Embrionárias/transplante , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Ratos
16.
J Vet Med Sci ; 82(6): 745-753, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32321901

RESUMO

Vascular endothelial growth factor-A (VEGF-A) is a principal regulator of hematopoiesis as well as angiogenesis. However, the functions of VEGF-A and its receptors (VEGFRs) in the differentiation of mast cells (MCs) in the skin remain unclear. The aim of this study was to determine the expression patterns of two VEGFRs (Flk1 and Flt1) in the skin MCs during development and maturation in rats. From the 17th days of embryonic development (E17) to 1 day after birth (Day 1), most of skin MCs were immature cells containing predominant alcian blue (AB)+ rather than safranin O (SO)+ granules (AB>SO MCs). AB>SO MC proportions gradually decreased, while mature ABSO MCs had significantly decreased, and AB

Assuntos
Mastócitos/metabolismo , Pele/crescimento & desenvolvimento , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Animais Recém-Nascidos , Diferenciação Celular , Desenvolvimento Embrionário , Feminino , Masculino , Ratos Wistar , Pele/metabolismo
17.
Brain Struct Funct ; 225(3): 1033-1053, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32189115

RESUMO

Motoneurons of the oculomotor system show lesser vulnerability to neurodegeneration compared to other cranial motoneurons, as seen in amyotrophic lateral sclerosis (ALS). The overexpression of vascular endothelial growth factor (VEGF) is involved in motoneuronal protection. As previously shown, motoneurons innervating extraocular muscles present a higher amount of VEGF and its receptor Flk-1 compared to facial or hypoglossal motoneurons. Therefore, we aimed to study the possible sources of VEGF to brainstem motoneurons, such as glial cells and target muscles. We also studied the regulation of VEGF in response to axotomy in ocular, facial, and hypoglossal motor nuclei. Basal VEGF expression in astrocytes and microglial cells of the cranial motor nuclei was low. Although the presence of VEGF in the different target muscles for brainstem motoneurons was similar, the presynaptic element of the ocular neuromuscular junction showed higher amounts of Flk-1, which could result in greater efficiency in the capture of the factor by oculomotor neurons. Seven days after axotomy, a clear glial reaction was observed in all the brainstem nuclei, but the levels of the neurotrophic factor remained low in glial cells. Only the injured motoneurons of the oculomotor system showed an increase in VEGF and Flk-1, but such an increase was not detected in axotomized facial or hypoglossal motoneurons. Taken together, our findings suggest that the ocular motoneurons themselves upregulate VEGF expression in response to lesion. In conclusion, the low VEGF expression observed in glial cells suggests that these cells are not the main source of VEGF for brainstem motoneurons. Therefore, the higher VEGF expression observed in motoneurons innervating extraocular muscles is likely due either to the fact that this factor is more avidly taken up from the target muscles, in basal conditions, or is produced by these motoneurons themselves, and acts in an autocrine manner after axotomy.


Assuntos
Tronco Encefálico/metabolismo , Neurônios Motores/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Astrócitos/metabolismo , Axotomia , Músculos Faciais/inervação , Microglia/metabolismo , Músculos Oculomotores/inervação , Ratos Wistar , Língua/inervação
18.
Arq. bras. med. vet. zootec. (Online) ; 71(6): 1829-1834, Nov.-Dec. 2019. tab, graf
Artigo em Português | LILACS, VETINDEX | ID: biblio-1055116

RESUMO

Avaliou-se a recuperação anestésica e a analgesia residual da infusão contínua (IC) de fentanil (F), lidocaína (L), cetamina (K) e fentanil-lidocaína-cetamina (FLK), associados à anestesia total intravenosa com o propofol, em cadelas submetidas à ovariossalpingo-histerectomia. Foram utilizados 32 animais pré-medicados com acepromazina, distribuídos em quatro grupos de acordo com o tratamento analgésico: F: bolus de 0,0036mg/kg de fentanil e IC de 0,0036mg mg/kg/h; L: bolus de 3mg/kg de lidocaína e IC de 3mg/kg/h; K: bolus de 0,6mg/kg de cetamina e IC de 0,6mg/kg/h; e FLK: bolus e IC dos três fármacos nas doses supracitadas. Após o bolus do tratamento analgésico, foi realizada a indução e o início da IC do tratamento analgésico e do propofol. Para avaliação da recuperação anestésica, foram considerados os tempos de extubação, decúbito esternal, posição quadrupedal e os efeitos adversos. A avaliação da analgesia foi realizada por meio da escala visual analógica e modificada de Glasgow, durante seis horas. Os efeitos adversos observados foram vômito, sialorreia e tremor muscular. Receberam analgesia de resgate 100% dos animais do grupo F, 87,5% do K, 50% do L e 12,5% do FLK. O FLK demonstrou maior analgesia, e a recuperação anestésica foi semelhante em todos os grupos.(AU)


The anesthetic recovery and residual analgesia of continuous rate infusion (CRI) of fentanyl (F), lidocaine (L), ketamine (K) and fentanyl-lidocaine-ketamine (FLK) associated with total intravenous anesthesia with propofol in bitches submitted to ovariohysterectomy were evaluated. 32 animals were used, pre-medicated with acepromazine and distributed into four groups according to analgesic treatment: F loading dose (LD) of 0.0036mg/kg fentanyl, and CRI of 0.0036mg/kg/h, L: LD of 3mg/kg lidocaine, and CRI of 3mg/kg/h; K: LD of 0.6mg/kg ketamine, and CRI of 0.6mg/kg/h and FLK: LD and CRI of the three drugs in the above mentioned doses. After the LD of analgesic treatment, the induction was performed and the CRI of the analgesic treatment and propofol started. To evaluate the anesthetic recovery, the time of extubation, sternal decubitus, quadrupedal position and adverse effects were considered. The analgesia evaluation was performed using the visual scale and modified Glasgow for six hours. The adverse effects observed were vomiting, sialorrhea and muscle tremor. 100% of the animals in group F, 87.5% of K, 50% of L and 12.5% of FLK received rescue analgesia. FLK demonstrated greater analgesia, and anesthesia recovery was similar in all groups.(AU)


Assuntos
Animais , Feminino , Cães , Período de Recuperação da Anestesia , Propofol/administração & dosagem , Fentanila/administração & dosagem , Anestésicos Combinados/administração & dosagem , Ketamina/administração & dosagem , Lidocaína/administração & dosagem , Salpingostomia/veterinária , Ovariectomia/veterinária , Histerectomia/veterinária
19.
Rev. argent. microbiol ; 51(4): 316-323, dic. 2019. graf
Artigo em Inglês | LILACS | ID: biblio-1057395

RESUMO

Abstract Bovine leukemia virus (BLV) is an important cattle pathogen that causes major economic losses worldwide, especially in dairy farms. The use of animal models provides valuable insight into the pathogenesis of viral infections. Experimental infections of sheep have been conducted using blood from BLV-infected cattle, infectious BLV molecular clones or tumor-derived cells. The Fetal Lamb Kidney cell line, persistently infected with BLV (FLK-BLV), is one of the most commonly used long-term culture available for the permanent production of virus. FLK-BLV cells or the viral particles obtained from the cell-free culture supernatant could be used as a source of provirus or virus to experimentally infect sheep. In this report, we aimed to determine the minimum amount of FLK-BLV cells or cell-free supernatant containing BLV needed to produce infection in sheep. We also evaluated the amount of antibodies obtained from a naturally-infected cow required to neutralize this infection. We observed that both sheep experimentally inoculated with 5000 FLK-BLV cells became infected, as well as one of the sheep receiving 500 FLK-BLV cells. None of the animals inoculated with 50 FLK-BLV cells showed evidence of infection. The cell-free FLK-BLV supernatant proved to be infective in sheep up to a 1:1000 dilution. Specific BLV antibodies showed neutralizing activity as none of the sheep became infected. Conversely, the animals receiving a BLV-negative serum showed signs of BLV infection. These results contribute to the optimization of a sheep bioassay which could be useful to further characterize BLV infection.


Resumen El virus de la leucosis bovina (bovine leukemia virus [BLV]) es un importante agente patógeno del ganado que causa importantes pérdidas económicas en todo el mundo, especialmente en los rodeos lecheros. El uso de modelos animales proporciona información valiosa sobre la patogénesis de las infecciones virales. Se realizaron infecciones experimentales en ovejas usando sangre de bovinos infectados con BLV, clones moleculares de BLV infecciosos o células derivadas de tumores. La línea celular Fetal Lamb Kidney, persistentemente infectada con el BLV (FLK-BLV), es uno de los cultivos a largo plazo más utilizados para la producción permanente de virus. Las células FLK-BLV o las partículas virales obtenidas del sobrenadante del cultivo libre de células podrían usarse como fuente de provirus o de virus para infectar experimentalmente ovejas. En este trabajo, nuestro objetivo fue determinar la cantidad mínima de células FLK-BLV o de sobrenadante libre de células que contiene BLV necesaria para producir infección en ovejas. También evaluamos la cantidad de anticuerpos bovinos anti-BLV necesaria para neutralizar la infección. Observamos que las dos ovejas inoculadas experimentalmente con 5000 células FLK-BLV se infectaron, y que una de las dos ovejas que recibieron 500 células FLK-BLV se infectó. Ninguno de los animales inoculados con 50 células FLK-BLV mostró evidencia de infección. El sobrenadante FLK-BLV libre de células demostró ser infectivo en ovejas hasta la dilución 1:1000. Los anticuerpos BLV específicos mostraron actividad neutralizante, ya que ninguna de las ovejas se infectó. Por el contrario, los animales que recibieron un suero BLV negativo mostraron signos de infección por BLV. Estos resultados contribuyen a la optimización de un bioensayo en ovejas útil para caracterizar la infección por BLV.


Assuntos
Animais , Bioensaio/veterinária , Ovinos/imunologia , Leucose Enzoótica Bovina/prevenção & controle , Vírus da Leucemia Bovina/patogenicidade , Infecções por Deltaretrovirus/imunologia , Modelos Animais
20.
Stem Cell Res Ther ; 10(1): 328, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31744543

RESUMO

Previous studies including ours have demonstrated a critical function of the transcription factor ETV2 (ets variant 2; also known as ER71) in determining the fate of cardiovascular lineage development. However, the underlying mechanisms of ETV2 function remain largely unknown. In this study, we demonstrated the novel function of the miR (micro RNA)-126-MAPK (mitogen-activated protein kinase) pathway in ETV2-mediated FLK1 (fetal liver kinase 1; also known as VEGFR2)+ cell generation from the mouse embryonic stem cells (mESCs). By performing a series of experiments including miRNA sequencing and ChIP (chromatin immunoprecipitation)-PCR, we found that miR-126 is directly induced by ETV2. Further, we identified that miR-126 can positively regulate the generation of FLK1+ cells by activating the MAPK pathway through targeting SPRED1 (sprouty-related EVH1 domain containing 1). Further, we showed evidence that JUN/FOS activate the enhancer region of FLK1 through AP1 (activator protein 1) binding sequences. Our findings provide insight into the novel molecular mechanisms of ETV2 function in regulating cardiovascular lineage development from mESCs.


Assuntos
Sistema de Sinalização das MAP Quinases , MicroRNAs/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Fatores de Transcrição/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Sítios de Ligação , Proteínas de Ligação ao Cálcio/genética , Família de Proteínas EGF/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Camundongos , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...